Smallest Triplet of Consecutive Integers each Divisible by Fourth Power

From ProofWiki
Jump to navigation Jump to search

Theorem

This triplet of consecutive integers has the property that each of them is divisible by a fourth power:

$33 \, 614, 33 \, 615, 33 \, 616$

This is the smallest such triplet.


Proof

\(\ds 33 \, 614\) \(=\) \(\ds 14 \times 7^4\)
\(\ds 33 \, 615\) \(=\) \(\ds 415 \times 3^4\)
\(\ds 33 \, 616\) \(=\) \(\ds 2101 \times 2^4\)


Each number in such triplets of consecutive integers is divisible by a fourth power of some prime number.

Only $2, 3, 5, 7, 11, 13$ are less than $\sqrt [4] {33 \, 616}$.


Case $1$: a number is divisible by $13^4$

The only multiple of $13^4$ less than $33 \, 616$ is $28 \, 561$, and:

\(\ds 28 \, 559\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 28 \, 560\) \(=\) \(\ds 2^4 \times 3 \times 5 \times 7 \times 17\)
\(\ds 28 \, 562\) \(=\) \(\ds 2 \times 14281\)

Since neither $28 \, 559$ nor $28 \, 562$ are divisible by a fourth power of some prime number, $28 \, 561$ is not in a triplet.

$\Box$


Case $2$: a number is divisible by $11^4$

The only multiples of $11^4$ less than $33 \, 616$ are $14 \, 641$ and $29 \, 282$, and:

\(\ds 14 \, 639\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 14 \, 640\) \(=\) \(\ds 2^4 \times 3 \times 5 \times 61\)
\(\ds 14 \, 642\) \(=\) \(\ds 2 \times 7321\)
\(\ds 29 \, 281\) \(=\) \(\ds 7 \times 47 \times 89\)
\(\ds 29 \, 283\) \(=\) \(\ds 3 \times 43 \times 227\)

Hence none of these numbers is in a triplet.

$\Box$


Case $3$: a number is divisible by $7^4$

There are $14$ multiples of $7^4$ less than $33 \, 616$, and:

\(\ds 2399\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 2400\) \(=\) \(\ds 2^5 \times 3 \times 5^2\)
\(\ds 2401\) \(=\) \(\ds 7^4\)
\(\ds 2402\) \(=\) \(\ds 2 \times 1201\)
\(\ds 4801\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 4802\) \(=\) \(\ds 2 \times 7^4\)
\(\ds 4803\) \(=\) \(\ds 3 \times 1601\)
\(\ds 7202\) \(=\) \(\ds 2 \times 13 \times 277\)
\(\ds 7203\) \(=\) \(\ds 3 \times 7^4\)
\(\ds 7204\) \(=\) \(\ds 2^2 \times 1801\)
\(\ds 9603\) \(=\) \(\ds 3^2 \times 11 \times 97\)
\(\ds 9604\) \(=\) \(\ds 4 \times 7^4\)
\(\ds 9605\) \(=\) \(\ds 5 \times 17 \times 113\)
\(\ds 12 \, 004\) \(=\) \(\ds 2^2 \times 3001\)
\(\ds 12 \, 005\) \(=\) \(\ds 5 \times 7^4\)
\(\ds 12 \, 006\) \(=\) \(\ds 2 \times 3^2 \times 23 \times 29\)
\(\ds 14 \, 405\) \(=\) \(\ds 5 \times 43 \times 67\)
\(\ds 14 \, 406\) \(=\) \(\ds 6 \times 7^4\)
\(\ds 14 \, 407\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 16 \, 806\) \(=\) \(\ds 2 \times 3 \times 2801\)
\(\ds 16 \, 807\) \(=\) \(\ds 7 \times 7^4\)
\(\ds 16 \, 808\) \(=\) \(\ds 2^3 \times 11 \times 191\)
\(\ds 19 \, 207\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 19 \, 208\) \(=\) \(\ds 8 \times 7^4\)
\(\ds 19 \, 209\) \(=\) \(\ds 3 \times 19 \times 337\)
\(\ds 21 \, 608\) \(=\) \(\ds 2^3 \times 37 \times 73\)
\(\ds 21 \, 609\) \(=\) \(\ds 9 \times 7^4\)
\(\ds 21 \, 610\) \(=\) \(\ds 2 \times 5 \times 2161\)
\(\ds 24 \, 009\) \(=\) \(\ds 3 \times 53 \times 151\)
\(\ds 24 \, 010\) \(=\) \(\ds 10 \times 7^4\)
\(\ds 24 \, 011\) \(=\) \(\ds 13 \times 1847\)
\(\ds 26 \, 410\) \(=\) \(\ds 2 \times 5 \times 19 \times 139\)
\(\ds 26 \, 411\) \(=\) \(\ds 11 \times 7^4\)
\(\ds 26 \, 412\) \(=\) \(\ds 2^2 \times 3 \times 31 \times 71\)
\(\ds 28 \, 811\) \(=\) \(\ds 47 \times 613\)
\(\ds 28 \, 812\) \(=\) \(\ds 12 \times 7^4\)
\(\ds 28 \, 813\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 31 \, 212\) \(=\) \(\ds 2^2 \times 3^3 \times 17^2\)
\(\ds 31 \, 213\) \(=\) \(\ds 13 \times 7^4\)
\(\ds 31 \, 214\) \(=\) \(\ds 2 \times 15 \, 607\)
\(\ds 33 \, 613\) \(\text {is}\) \(\ds \text {prime}\)
\(\ds 33 \, 614\) \(=\) \(\ds 14 \times 7^4\)
\(\ds 33 \, 615\) \(=\) \(\ds 415 \times 3^4\)
\(\ds 33 \, 616\) \(=\) \(\ds 2101 \times 2^4\)


Hence the smallest valid triplet is $\tuple {33 \, 614, 33 \, 615, 33 \, 616}$.

$\Box$


Case $4$: the numbers are divisible by $2^4, 3^4, 5^4$ respectively

We utilise Chinese Remainder Theorem.

We are to solve the system of linear congruences:

$x \equiv b_1 \pmod {2^4}$
$x \equiv b_2 \pmod {3^4}$
$x \equiv b_3 \pmod {5^4}$

where $\set {b_1, b_2, b_3} = \set {1, 0, -1}$.


First note the linear congruences:

$3^4 5^4 x \equiv 1 \pmod {2^4}$
$2^4 5^4 x \equiv 1 \pmod {3^4}$
$2^4 3^4 x \equiv 1 \pmod {5^4}$

have solutions $1, 46, 231$ respectively.


Thus our system of linear congruences has the solution:

\(\ds x_0\) \(=\) \(\ds 3^4 5^4 b_1 + 2^4 5^4 \times 46 b_2 + 2^4 3^4 \times 231 b_3\) \(\ds \pmod {2^4 3^4 5^4}\)
\(\ds \) \(=\) \(\ds 50 \, 625 b_1 + 460 \, 000 b_2 + 299 \, 376 b_3\) \(\ds \pmod {810 \, 000}\)


Now we assign $\set {b_1, b_2, b_3}$ to $\set {1, 0, -1}$.

The solutions are:

$\tuple {0, 1, -1}: 160 \, 624$
$\tuple {0, -1, 1}: -160 \, 624 \equiv 649 \, 376$
$\tuple {-1, 0, 1}: 248 \, 751$
$\tuple {1, 0, -1}: -248 \, 751 \equiv 561 \, 249$
$\tuple {-1, 1, 0}: 409 \, 375$
$\tuple {1, -1, 0}: -409 \, 375 \equiv 400 \, 625$

and none of these solutions are less than $33 \, 616$.

$\blacksquare$


Historical Note

This result is reported by David Wells in his Curious and Interesting Numbers, 2nd ed. of $1997$ as the work of Stephane Vandemergel, but details are lacking.


Sources