Solutions of sin x equals sin a

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\alpha \in \closedint {-1} 1$ be fixed.

Let:

$(1): \quad \sin x = \sin \alpha$


The solution set of $(1)$ is:

$\set {x \in \R: \forall n \in \Z: x = n \pi + \paren {-1}^n \alpha}$


Proof

From Sine of Supplementary Angle:

$\map \sin {\pi - x} = \sin x$

and so from Real Sine Function is Periodic:

\(\ds x\) \(=\) \(\ds 2 n \pi + a\)
\(\ds x\) \(=\) \(\ds \paren {2 n + 1} \pi - a\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds n \pi + \paren {-1}^n x\)

$\blacksquare$


Sources