Square Root of Sum as Sum of Square Roots/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \R, a \ge b$.

Then:

$\sqrt {a + b} = \sqrt {\dfrac a 2 + \dfrac {\sqrt {a^2 - b^2}} 2} + \sqrt {\dfrac a 2 - \dfrac {\sqrt {a^2 - b^2}} 2}$


Proof

From Sum of Square Roots as Square Root of Sum:

$\sqrt p + \sqrt q = \sqrt {p + q + \sqrt {4pq}}$

Let

$p = \dfrac a 2 + \dfrac {\sqrt {a^2 - b^2}} 2$,
$q = \dfrac a 2 - \dfrac {\sqrt {a^2 - b^2}} 2$.

Then

\(\ds p + q\) \(=\) \(\ds \frac a 2 + \frac {\sqrt {a^2 - b^2} } 2 + \frac a 2 - \frac {\sqrt {a^2 - b^2} } 2\)
\(\ds \) \(=\) \(\ds a\)
\(\ds \sqrt {4pq}\) \(=\) \(\ds \sqrt {4 \paren {\frac a 2 + \frac {\sqrt {a^2 - b^2} } 2} \paren {\frac a 2 - \frac {\sqrt {a^2 - b^2} } 2} }\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {a + \sqrt {a^2 - b^2} } \paren {a - \sqrt {a^2 - b^2} } }\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds \sqrt {a^2 - \paren {a^2 - b^2} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \sqrt {b^2}\)
\(\ds \) \(=\) \(\ds b\)

Therefore:

$\sqrt {\dfrac a 2 + \dfrac {\sqrt {a^2 - b^2}} 2} + \sqrt {\dfrac a 2 - \dfrac {\sqrt {a^2 - b^2}} 2} = \sqrt {a + b}$


$\blacksquare$