Square of Sum/Algebraic Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall x, y \in \R: \paren {x + y}^2 = x^2 + 2 x y + y^2$


Proof

Follows from the distribution of multiplication over addition:

\(\ds \paren {x + y}^2\) \(=\) \(\ds \paren {x + y} \cdot \paren {x + y}\) Definition of Square Function
\(\ds \) \(=\) \(\ds x \cdot \paren {x + y} + y \cdot \paren {x + y}\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x \cdot x + x \cdot y + y \cdot x + y \cdot y\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x \cdot x + x \cdot y + x \cdot y + y \cdot y\) Real Multiplication is Commutative
\(\ds \) \(=\) \(\ds x \cdot x + 2 x y + y \cdot y\) simplifying
\(\ds \) \(=\) \(\ds x^2 + 2 x y + y^2\) Definition of Square Function

$\blacksquare$