Structure Induced by Left Distributive Operation is Left Distributive

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {T, +, \times}$ be an algebraic structure, and let $S$ be a set.

Let $\struct {T^S, \oplus, \otimes}$ be the structure on $T^S$ induced by $+$ and $\times$.


Let $\times$ be left distributive over $+$:

$\forall a, b, c \in S: a \times \paren {b + c} = \paren{a \times b} + \paren{a \times c}$


Then the pointwise operation $\otimes$ is left distributive over the pointwise operation $\oplus$ on $T^S$:

$\forall f, g, h \in T^S: f \otimes \paren {g \oplus h} = \paren{f \otimes g} \oplus \paren{f \otimes h}$


Proof

Let $f, g, h \in T^S$.


Then:

\(\ds \forall x \in S: \, \) \(\ds \map {\paren{f \otimes \paren {g \oplus h} } } x\) \(=\) \(\ds \map f x \times \map {\paren{g \otimes h} } x\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \map f x \times \paren{ \map g x + \map h x}\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \paren{\map f x \times \map g x} + \paren{\map f x \times \map h x}\) Definition of Left Distributive Operation
\(\ds \) \(=\) \(\ds \map {\paren{f \otimes g} } x + \map {\paren{f \otimes h} } x\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \map {\paren{\paren{f \otimes g} \oplus \paren{f \otimes h} } } x\) Definition of Pointwise Operation


From Equality of Mappings:

$f \otimes \paren {g \oplus h} = \paren{f \otimes g} \oplus \paren{f \otimes h}$


Since $f, g, h$ were arbitrary:

$\forall f, g, h \in T^S: f \otimes \paren {g \oplus h} = \paren{f \otimes g} \oplus \paren{f \otimes h}$

Hence $\otimes$ is left distributive over $\oplus$ by definition.

$\blacksquare$