Structure Induced by Right Distributive Operation is Right Distributive

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {T, +, \times}$ be an algebraic structure, and let $S$ be a set.

Let $\struct {T^S, \oplus, \otimes}$ be the structure on $T^S$ induced by $+$ and $\times$.


Let $\times$ be right distributive over $+$:

$\forall a, b, c \in S: \paren {b + c} \times a= \paren{b \times a} + \paren{c \times a}$


Then the pointwise operation $\otimes$ is left distributive over the pointwise operation $\oplus$ on $T^S$:

$\forall f, g, h \in T^S: \paren {g \oplus h} \otimes f = \paren{g \otimes f} \oplus \paren{h \otimes f}$


Proof

Let $f, g, h \in T^S$.


Then:

\(\ds \forall x \in S: \, \) \(\ds \map {\paren{\paren {g \oplus h} \otimes f} } x\) \(=\) \(\ds \map {\paren{g \otimes h} } x \times \map f x\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \paren{ \map g x + \map h x} \times \map f x\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \paren{\map g x \times \map f x} + \paren{\map h x \times \map f x}\) Definition of Right Distributive Operation
\(\ds \) \(=\) \(\ds \map {\paren{g \otimes f } } x + \map {\paren{h \otimes f} } x\) Definition of Pointwise Operation
\(\ds \) \(=\) \(\ds \map {\paren{\paren{g \otimes f} \oplus \paren{h \otimes f} } } x\) Definition of Pointwise Operation


From Equality of Mappings:

$\paren {g \oplus h} \otimes f = \paren{g \otimes f} \oplus \paren{h \otimes f}$


Since $f, g, h$ were arbitrary:

$\forall f, g, h \in T^S: \paren {g \oplus h} \otimes f = \paren{g \otimes f} \oplus \paren{h \otimes f}$

Hence $\otimes$ is right distributive over $\oplus$ by definition.

$\blacksquare$