Subadditivity of Invariant Metric on Vector Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K$ be a field.

Let $X$ be a vector space over $K$.

Let $d$ be an invariant metric on $X$.


Then:

$\map d {n x, {\mathbf 0}_X} \le n \map d {x, {\mathbf 0}_X}$

for each $n \in \N$ and $x \in X$.


Proof

We have:

\(\ds \map d {n x, {\mathbf 0}_X}\) \(=\) \(\ds \sum_{k \mathop = 1}^n \map d {k x, \paren {k - 1} x}\) Metric Space Axiom $(\text M 2)$: Triangle Inequality
\(\ds \) \(\le\) \(\ds \sum_{k \mathop = 1}^n \map d {k x - \paren {k - 1} x, \paren {k - 1} x - \paren {k - 1} x}\) Definition of Invariant Metric on Vector Space
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \map d {x, {\mathbf 0}_X}\)
\(\ds \) \(=\) \(\ds n \map d {x, {\mathbf 0}_X}\)

$\blacksquare$


Sources