Sum Rule for Sequence in Normed Vector Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF \in \set {\R, \C}$.

Let $\struct {X, \norm {\, \cdot \,} }$ be a normed vector space over $\GF$.

Let $\sequence {x_n}_{n \in \N}$ and $\sequence {y_n}_{n \in \N}$ be convergent sequences such that:

$x_n \to x$

and:

$y_n \to y$


Then:

$x_n + y_n \to x + y$


Proof

For each $n \in \N$, we have:

\(\ds \norm {\paren {x_n + y_n} - \paren {x + y} }\) \(=\) \(\ds \norm {\paren {x_n - x} + \paren {y_n - y} }\)
\(\ds \) \(\le\) \(\ds \norm {x_n - x} + \norm {y_n - y}\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(\to\) \(\ds 0\)

So from Sequence in Normed Vector Space Convergent to Limit iff Norm of Sequence minus Limit is Null Sequence, we have:

$x_n + y_n \to x + y$

$\blacksquare$