Sum of Reciprocals of Odd Powers of Odd Integers Alternating in Sign
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then:
\(\ds \sum_{j \mathop = 0}^\infty \frac {\paren {-1}^j} {\paren {2 j + 1}^{2 n + 1} }\) | \(=\) | \(\ds \paren {-1}^{n + 1} \frac {\pi^{2 n + 1} E_{2 n} } {2^{2 n + 2} \paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1^{2 n + 1} } - \frac 1 {3^{2 n + 1} } + \frac 1 {5^{2 n + 1} } - \frac 1 {7^{2 n + 1} } + \cdots\) |
where $E_n$ is the $n$th Euler number.
Corollary
Let $n \in \Z_{> 0}$ be a (strictly) positive integer.
\(\ds E_{2 n}\) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2^{2 n + 2} \paren {2 n}!} {\pi^{2 n + 1} } \sum_{j \mathop = 0}^\infty \frac {\paren {-1}^j} {\paren {2 j + 1}^{2 n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2^{2 n + 2} \paren {2 n}!} {\pi^{2 n + 1} } \paren {\frac 1 {1^{2 n + 1} } - \frac 1 {3^{2 n + 1} } + \frac 1 {5^{2 n + 1} } - \frac 1 {7^{2 n + 1} } + \cdots}\) |
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.38$