Sum of Reciprocals of Squares of Odd Integers/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) \(=\) \(\ds 1 + \dfrac 1 {3^2} + \dfrac 1 {5^2} + \dfrac 1 {7^2} + \dfrac 1 {9^2} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^2} 8\)


Proof

\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\) \(=\) \(\ds \map \zeta 2\) Definition of Riemann Zeta Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n}^2} + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\)
\(\ds \) \(=\) \(\ds \frac 1 4 \sum_{n \mathop = 1}^\infty \frac 1 {n^2} + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\)
\(\ds \) \(=\) \(\ds \frac 1 4 \map \zeta 2 + \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\)

Hence:

\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) \(=\) \(\ds \frac 3 4 \map \zeta 2\)
\(\ds \) \(=\) \(\ds \frac 3 4 \cdot \frac{\pi^2} 6\) Basel Problem
\(\ds \) \(=\) \(\ds \frac {\pi^2} 8\)

$\blacksquare$