Sum of Sequence of n by 2 to the Power of n/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{j \mathop = 0}^n j \, 2^j = n \, 2^{n + 2} - \paren {n + 1} 2^{n + 1} + 2$


Proof

From Sum of Sequence of Power by Index:

$\ds \sum_{j \mathop = 0}^n j x^j = \frac {n x^{n + 2} - \paren {n + 1} x^{n + 1} + x} {\paren {x - 1}^2}$


Hence:

\(\ds \ds \sum_{j \mathop = 0}^n j \, 2^j\) \(=\) \(\ds \frac {n 2^{n + 2} - \paren {n + 1} 2^{n + 1} + 2} {\paren {2 - 1}^2}\) putting $x = 2$
\(\ds \) \(=\) \(\ds n 2^{n + 2} - \paren {n + 1} 2^{n + 1} + 2\) simplification

Hence the result.

$\blacksquare$