Sum over k of m choose k by -1^m-k by k to the n

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z_{\ge 0}$.

$\ds \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$

where:

$\dbinom m k$ denotes a binomial coefficient
$\ds {n \brace m}$ etc. denotes a Stirling number of the second kind
$m!$ denotes a factorial.


Proof

The proof proceeds by induction on $m$.


For all $m \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$\ds \forall n \in \Z_{\ge 0}: \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$


Basis for the Induction

$\map P 0$ is the case:

\(\ds \) \(\) \(\ds \sum_k \binom 0 k \paren {-1}^{0 - k} k^n\)
\(\ds \) \(=\) \(\ds \sum_k \delta_{0 k} \paren {-1}^{- k} k^n\) Zero Choose n
\(\ds \) \(=\) \(\ds \paren {-1}^{- 0} 0^n\) all terms vanish except for $k = 0$
\(\ds \) \(=\) \(\ds \delta_{0 n}\) $0^n = 0$ except when $n = 0$, as $0^0 = 1$
\(\ds \) \(=\) \(\ds 0! {n \brace 0}\) Definition of Stirling Numbers of the Second Kind

So $\map P 0$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r + 1}$ is true.


So this is the induction hypothesis:

$\ds \sum_k \binom r k \paren {-1}^{r - k} k^n = r! {n \brace r}$


from which it is to be shown that:

$\ds \sum_k \binom {r + 1} k \paren {-1}^{r + 1 - k} k^n = \paren {r + 1}! {n \brace r + 1}$


Induction Step

This is the induction step:

\(\ds \) \(\) \(\ds \sum_k \binom {r + 1} k \paren {-1}^{r + 1 - k} k^n\)
\(\ds \) \(=\) \(\ds \sum_k \paren {\binom r k + \binom r {k - 1} } \paren {-1}^{r + 1 - k} k^n\) Pascal's Rule
\(\ds \) \(=\) \(\ds \sum_k \binom r k \paren {-1}^{r + 1 - k} k^n + \sum_k \binom r {k - 1} \paren {-1}^{r + 1 - k} k^n\)
\(\ds \) \(=\) \(\ds -\sum_k \binom r k \paren {-1}^{r - k} k^n + \sum_k \binom r {k - 1} \paren {-1}^{r - \paren {k - 1} } k^n\)
\(\ds \) \(=\) \(\ds -r! {n \brace r} + \sum_k \binom r {k - 1} \paren {-1}^{r - \paren {k - 1} } k^n\) Induction Hypothesis
\(\ds \) \(=\) \(\ds -r! {n \brace r} + \sum_k \binom r k \paren {-1}^{r - k} \paren {k + 1}^n\) Translation of Index Variable of Summation



So $\map P r \implies \map P {r + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds \forall m, n \in \Z_{\ge 0}: \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$

$\blacksquare$


Sources