Summation over Finite Subset is Well-Defined

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct{G, +}$ be a commutative monoid.


Let $F \subseteq G$ be a finite subset of $G$.


Then the summation $\ds \sum_{g \mathop \in F} g$ is well-defined.


Proof

To show that summation over $F$ is well-defined it needs to be shown:

$(1) \quad \exists$ a finite enumeration of $F$
$(2) \quad \forall$ finite enumerations $e$ and $d$ of $F : \ds \sum_{i \mathop = 1}^n e_i = \sum_{i \mathop = 1}^n d_i$


Proof of $(1)$

By definition of finite set:

$\exists n \in \N : \exists$ a bijection $e: \closedint 1 n \to F$

Hence $e$ is a finite enumeration of $F$ by definition.

So the summation $\ds \sum_{i \mathop = 1}^n e_i$ exists.

$\Box$


Proof of $(2)$

Let $d: \closedint 1 n \to F$ be any other finite enumeration of $F$.


Consider the composite mapping $e^{-1} \circ d : \closedint 1 n \to \closedint 1 n$ which exists and is a bijection because $e$ and $d$ are bijections.

Let $\operatorname{id}_G: G \to G$ denote the identity mapping on $G$.


We have:

\(\ds \sum_{i \mathop = 1}^n e_i\) \(=\) \(\ds \sum_{i \mathop = 1}^n \map e i\) Definition of Mapping
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map e {\map {e^{-1} \circ d} i}\) Indexed Iterated Operation does not Change under Permutation
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {e \circ \paren{e^{-1} \circ d} } i\) Definition of Composite Mapping
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {\paren {e \circ e^{-1} } \circ d} i\) Composition of Mappings is Associative
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {\operatorname{id}_G \circ d} i\) Composite of Bijection with Inverse is Identity Mapping
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map d i\) Identity Mapping is Left Identity
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n d_i\) Definition of Finite Enumeration

$\Box$


The result follows.

$\blacksquare$