Symmetric Group on 3 Letters/Order of Elements

From ProofWiki
Jump to navigation Jump to search

Orders of Elements of the Symmetric Group on $3$ Letters

Let $S_3$ denote the Symmetric Group on $3$ Letters, whose Cayley table is given as:

$\begin{array}{c|cccccc}\circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$


The orders of the various elements of $S_3$ are:

\(\ds e: \, \) \(\ds \) \(\) \(\ds \) Order $1$
\(\ds \tuple {123}: \, \) \(\ds \tuple {123}^2\) \(=\) \(\ds \tuple {132}\)
\(\ds \tuple {123} \tuple {132}\) \(=\) \(\ds e\) hence Order $3$
\(\ds \tuple {132}: \, \) \(\ds \tuple {132}^2\) \(=\) \(\ds \tuple {123}\)
\(\ds \tuple {132} \tuple {123}\) \(=\) \(\ds e\) hence Order $3$
\(\ds \tuple {12}: \, \) \(\ds \tuple {12}^2\) \(=\) \(\ds e\) hence Order $2$
\(\ds \tuple {13}: \, \) \(\ds \tuple {13}^2\) \(=\) \(\ds e\) hence Order $2$
\(\ds \tuple {23}: \, \) \(\ds \tuple {23}^2\) \(=\) \(\ds e\) hence Order $2$


Sources