Symmetry of Bernoulli Polynomial

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map {B_n} x$ denote the nth Bernoulli polynomial.


Then:

$\map {B_n} {1 - x} = \paren {-1}^n \map {B_n} x$


Proof

Let $\map G {t, x}$ denote the Generating Function for Bernoulli Polynomials:

$\map G {t, x} = \dfrac {t e^{t x} } {e^t - 1}$


Then:

\(\ds \map G {t, 1 - x}\) \(=\) \(\ds \frac {t e^{t \paren {1 - x} } } {e^t - 1}\)
\(\ds \) \(=\) \(\ds \frac {t e^{t - t x} } {e^t - 1}\)
\(\ds \) \(=\) \(\ds \frac {t e^{-t x} } {1 - e^{-t} }\)
\(\ds \) \(=\) \(\ds \frac {-t e^{-t x} } {e^{-t} - 1}\)
\(\ds \) \(=\) \(\ds \map G {-t, x}\)


Thus:

\(\ds \map G {t, 1 - x}\) \(=\) \(\ds \map G {-t, x}\)
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 0}^\infty \frac {\map {B_k} {1 - x} } {k!} t^k\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k \map {B_k} x} {k!} t^k\)
\(\ds \leadsto \ \ \) \(\ds \map {B_k} {1 - x}\) \(=\) \(\ds \paren {-1}^k \map {B_k} x\)

$\blacksquare$