Union is Empty iff Sets are Empty/Set of Sets

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\SS$ be a set of sets.


Then:

$\ds \bigcup \SS = \O \iff \forall S \in \SS: S = \O$


Proof

\(\ds \) \(\) \(\ds \bigcup \SS = \O\)
\(\ds \leadstoandfrom \ \ \) \(\ds \neg \exists x: \, \) \(\ds \) \(\) \(\ds x \in \paren {\bigcup \SS}\) Definition of Empty Set
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \neg \paren {x \in \bigcup \SS }\) De Morgan's Laws (Predicate Logic)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \neg \paren {\exists S \in \SS : x \in S}\) Definition of Set Union
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x, \forall S \in \SS: \, \) \(\ds \) \(\) \(\ds x \notin S\) De Morgan's Laws: Assertion of Universality
\(\ds \leadstoandfrom \ \ \) \(\ds \forall S \in \SS: \, \) \(\ds \) \(\) \(\ds S = \O\) Definition of Empty Set

$\blacksquare$