Union of Intersections of 2 from 3 equals Intersection of Unions of 2 from 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$, $B$ and $C$ be sets.

Then:

$\paren {A \cap B} \cup \paren {B \cap C} \cup \paren {C \cap A} = \paren {A \cup B} \cap \paren {B \cup C} \cap \paren {C \cup A}$


Proof

\(\ds \paren {A \cap B} \cup \paren {B \cap C} \cup \paren {C \cap A}\) \(=\) \(\ds \paren {B \cap \paren {A \cup C} } \cup \paren {C \cap A}\) Intersection Distributes over Union
\(\ds \) \(=\) \(\ds \paren {B \cup \paren {C \cap A} } \cap \paren {\paren {A \cup C} \cup \paren {C \cap A} }\) Union Distributes over Intersection
\(\ds \) \(=\) \(\ds \paren {B \cup \paren {C \cap A} } \cap \paren {C \cup A}\) Intersection is Subset of Union, Union with Superset is Superset
\(\ds \) \(=\) \(\ds \paren {B \cup C} \cap \paren {B \cup A} \cap \paren {C \cup A}\) Union Distributes over Intersection

$\blacksquare$


Sources