Universal Quantifier Distributes over Conjunction

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map \phi x, \map \psi x$ be WFFs of the free variable $x$.

Then:

$\forall x: \paren {\map \phi x \land \map \psi x} \dashv \vdash \paren {\forall x: \map \phi x} \land \paren {\forall x: \map \psi x}$

Proof

Forward Implication

By the tableau method of natural deduction:

$\forall x: \paren {\map \phi x \land \map \psi x} \vdash \paren {\forall x: \map \phi x} \land \paren {\forall x: \map \psi x} $
Line Pool Formula Rule Depends upon Notes
1 1 $\forall x: \paren {\map \phi x \land \map \psi x}$ Premise
2 1 $\map \phi {x \gets x_0} \land \map \psi {x \gets x_0}$ Universal Instantiation 1
3 1 $\map \phi {x \gets x_0}$ Rule of Simplification 2
4 1 $\forall x: \map \phi x$ Universal Generalisation 3
5 1 $\map \psi {x \gets x_0}$ Rule of Simplification 2
6 1 $\forall x: \map \psi x$ Universal Generalisation 5
7 1 $\paren {\forall x: \map \phi x} \land \paren {\forall x: \map \psi x}$ Rule of Conjunction 4, 6

$\Box$

Reverse Implication

By the tableau method of natural deduction:

$\paren {\forall x: \map \phi x} \land \paren {\forall x: \map \psi x} \vdash \forall x: \paren {\map \phi x \land \map \psi x} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {\forall x: \map \phi x} \land \paren {\forall x: \map \psi x}$ Premise
2 1 $\forall x: \map \phi x$ Rule of Simplification 1
3 1 $\map \phi {x \gets x_0}$ Universal Instantiation 2
4 1 $\forall x: \map \psi x$ Rule of Simplification 1
5 1 $\map \psi {x \gets x_0}$ Universal Instantiation 4
6 1 $\map \phi {x \gets x_0} \land \map \psi {x \gets x_0}$ Rule of Conjunction 3, 5
7 1 $\forall x: \paren {\map \phi x \land \map \psi x}$ Universal Generalisation 6

$\blacksquare$