User:Barto/Hensel's Lemma

From ProofWiki
Jump to navigation Jump to search

Draft work, to be placed at Hensel's Lemma some time. Given the number of different versions, we have to think how to structure them: transcluded subpages? Entirely distinct pages?


Hensel's Lemma in $\Z$

First Form

Published at Hensel's Lemma/First Form

Composite Numbers

Published at Hensel's Lemma for Composite Numbers

Singular Point

Let $p$ be a prime number.

Let $k>0$ be a positive integer.

Let $f(X) \in \Z[X]$ be a polynomial.

Let $x_0\in\Z$ such that:

$f(x_0)\equiv 0 \pmod{p^{2e+1}}$

where $e=\nu_p(f'(x_0))$.


Then for every positive integer $n>0$ there exists an integer $x_{n}$ such that:

$x_{n}\equiv x_{n-1}\pmod{p^{e+n}}$
$f(x_{n})\equiv 0 \pmod{p^{2e+1+n}}$

Moreover, each such $x_{n}$ is unique up to a multiple of $p^{e+n+1}$.


Multivariate

User:Barto/Hensel's Lemma/Multivariate

Multivariate Composite

Let $b\neq0,\pm1$ be an integer.

Let $k,N>0$ be positive integers.

Let $f(X) \in \Z[X_1,\ldots,X_N]$ be a polynomial.

Let $x=(x_1,\ldots,x_N) \in \Z^N$ such that:

$f(x)\equiv 0 \pmod{b^k}$
$\gcd\left( \frac{\partial f}{\partial x_i}(x), b\right )=1$ for some $i\in\{1,\ldots,N\}$


Then for every positive integer $l>0$ there exist, up to a multiple of $b^{k+l}$ exactly $b^{l\cdot(N-1)}$ elements $y\in\Z^N$ such that:

$f(y)\equiv0 \pmod{b^{k+l}}$
$y\equiv x \pmod{b^k}$


Multivariate Singular

User:Barto/Hensel's Lemma/Multivariate Singular

System of Congruences

User:Barto/Hensel's Lemma/System of Congruences


$p$-adic versions

Generalizations