User:Jshflynn/Language Product Distributes over Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Sigma$ be an alphabet.


Let $V, W$ and $Y$ be formal languages over $\Sigma$.


Let $\circ$ denote concatenation and $\circ_L$ denote language product.


Then $\circ_L$ is distributive over $\circ$. That is,


$V \circ_L \left({W \cup Y}\right) = \left({V \circ_L W} \right) \cup \left({V \circ_L Y}\right)$


And


$\left({W \cup Y}\right) \circ_L V = \left({W \circ_L V}\right) \cup \left({Y \circ_L V}\right)$


Proof

\(\ds V \circ_L \left({W \cup Y}\right)\) \(=\) \(\ds \{x \circ y: x \in V \land y \in W \cup Y\}\) Definition of language product
\(\ds \) \(=\) \(\ds \set {x \circ y: x \in V \land \left({y \in W \lor y \in Y}\right)}\) Definition of union
\(\ds \) \(=\) \(\ds \set {x \circ y: \left({x \in V \land y \in W}\right) \lor \left({x \in V \land y \in Y}\right)}\) Rule of Distribution
\(\ds \) \(=\) \(\ds \left({V \circ_L W} \right) \cup \left({V \circ_L Y}\right)\) Definition of language product


Hence language product is left distributive over union.


The proof that language product is right distributive follows similarly.


$\blacksquare$