User:Leigh.Samphier/Topology/Category of Locales with Localic Mappings is Isomorphic to Category of Locales

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\mathbf{Loc}$ denote the category of locales.

Let $\mathbf{Loc_*}$ denote the category of locales with localic mappings.


Then:

$\mathbf{Loc_*}$ is isomorphic to $\mathbf{Loc}$.

Proof

By definitions of category of locales and category of locales with localic mappings:

the objects of $\mathbf{Loc}$ and $\mathbf{Loc_*}$ are locales
the morphisms of $\mathbf{Loc}$ are continuous maps
the morphisms of $\mathbf{Loc_*}$ are localic mappings

By definition of continuous maps:

$f : L_1 \to L_2$ is a continuous map if and only if there exists a frame homomorphism $f^* : L_2 \to L_1 :$
$f = \paren{f^*}^{\operatorname{op}}$

By definition of localic mapping:

$g : L_1 \to L_2$ is a localic mapping if and only if there exists a frame homomorphism $g^* : L_2 \to L_1 :$
$\tuple{g, g^*}$ is a Galois connection


Let $F : \mathbf{Loc} \to \mathbf{Loc_*}$ be defined by:

for each locale $L$ of $\mathbf{Loc_*} : \map F L = L$
for each continuous map $f : L_1 \to L_2$ of $\mathbf{Loc} : \map G f = f_*$

where:

$f_* : L_1 \to L_2$ denotes the upper adjoint of the frame homomorphism $f^* : L_2 \to L_1$
$f = \paren{f^*}^{\operatorname{op}}$

Lemma 1

$F : \mathbf{Loc} \to \mathbf{Loc_*}$ is a well-defined functor

$\Box$


Let $G : \mathbf{Loc_*} \to \mathbf{Loc}$ be defined by:

for each locale $L$ of $\mathbf{Loc_*} : \map G L = L$
for each localic mapping $g : L_1 \to L_2$ of $\mathbf{Loc_*} : \map G g = \paren{g^*}^{\operatorname{op}}$

where:

$g^* : L_2 \to L_1$ denotes the frame homomorphism that is the lower adjoint of the localic mapping $g$
$\paren{g^*}^{\operatorname{op}}$ denotes the opposite morphism of the frame homomorphism

Lemma 2

$G : \mathbf{Loc_*} \to \mathbf{Loc}$ is a well-defined functor

$\Box$


Lemma 3

$GF = \operatorname{id}_{\mathbf {Loc}}$

$\Box$


Lemma 4

$FG = \operatorname{id}_{\mathbf {Loc_*}}$

$\Box$


It follows that $F$ is an isomorphism of categories by definition.

Hence $\mathbf{Loc_*}$ is isomorphic to $\mathbf{Loc}$.

$\blacksquare$


Sources