User:Sandbox/Du Bois-Reymond Constants/Example/First

From ProofWiki
Jump to navigation Jump to search

Example of Du Bois-Reymond Constant

The first du Bois-Reymond constant $C_1$ does not exist.

This is because:

$\ds \int_0^\infty \size {\map {\dfrac \d {\d t} } {\dfrac {\sin t} t}^n} \rd t - 1$

does not converge for $n = 1$.


Proof

Let:

$\ds \map f t = \frac{\sin t} t$

Its derivative is:

$\ds \map {f'} t = \frac{t \map \cos t - \map \sin t}{t^2}$

Let $\ds \sequence {t_n}_{n \mathop = 1}^\infty$ be all the positive roots of $\map {f'} {t}$ in increasing order.

Equivalently, $\ds \sequence {t_n}_{n \mathop = 1}^\infty$ are all the positive roots of $t = \map \tan t$.


So:

\(\text {(1)}: \quad\) \(\ds n \pi\) \(<\) \(\ds t_n\) \(\ds < \frac {\pi} 2 + n \pi\)

and:

\(\text {(2)}: \quad\) \(\ds \size {\map \sin {t_n} }\) \(\ge\) \(\ds \size {\map \sin {t_1} }\)


Since $\sequence {t_n}$ are roots of $f'$, the sign of $\map {f'} t$ alternates between positive and negative on each interval:

\(\ds \map {f'} t\) \(<\) \(\ds 0\) for $0 < t < t_1$
\(\ds \map {f'} t\) \(>\) \(\ds 0\) for $t_1 < t < t_2$
\(\ds \map {f'} t\) \(<\) \(\ds 0\) for $t_2 < t < t_3$
\(\ds \map {f'} t\) \(>\) \(\ds 0\) for $t_3 < t < t_4$
\(\ds \) \(\vdots\) \(\ds \)


By definition of absolute value:

$\size {\map {f'} t} = -\map {f'} t$ for $t \in \closedint 0 {t_1} \cup \closedint {t_2} {t_3} \cup \cdots$
$\size {\map {f'} t} = \map {f'} t$ for $t \in \closedint {t_1} {t_2} \cup \closedint {t_3} {t_4} \cup \cdots$
\(\ds \size {\map {f'} t}\) \(=\) \(\ds -\map {f'} t\) for $t \in \closedint 0 {t_1} \cup \closedint {t_2} {t_3} \cup \cdots$
\(\ds \size {\map {f'} t}\) \(=\) \(\ds \map {f'} t\) for $t \in \closedint {t_1} {t_2} \cup \closedint {t_3} {t_4} \cup \cdots$


Also, by Fundamental Theorem of Calculus:

$\ds \int_{t_n}^{t_{n + 1} } \map {f'} t \rd t = \map f {t_{n + 1} }- \map f {t_n}$

Substituting these into the integral:

\(\ds \ds \int_0^\infty \size {\map {f'} t} \rd t\) \(=\) \(\ds \int_0^{t_1} \size {\map {f'} t} \rd t + \int_{t_1}^{t_2} \size {\map {f'} t} \rd t + \cdots\)
\(\ds \) \(=\) \(\ds -\paren {\map f {t_1} - 0} + \paren {\map f {t_2}- \map f {t_1} } - \paren {\map f {t_3}- \map f {t_2} } + \paren {\map f {t_4}- \map f {t_3} } - \cdots\)
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \size {\map f {t_n} }\)
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \frac{\size {\map \sin {t_n} } } {t_n}\)

By $(1)$, we have:

$t_n < \dfrac \pi 2 + n \pi$

By $(2)$, we have:

$\size {\map \sin {t_1} } \le \size {\map \sin {t_n} }$

So:

$\dfrac {\size {\map \sin {t_n} } } {t_n} > \dfrac {\size {\map \sin {t_1} } } {\dfrac \pi 2 + n \pi}$

But:

$\ds \sum_{n \mathop = 1}^\infty \frac {\size {\map \sin {t_1} } } {\frac \pi 2 + n \pi} = \infty$

By Comparison Test for Divergence:

$\ds \sum_{n \mathop = 1}^\infty \frac{\size {\map \sin {t_n} } }{t_n} = \infty$

By $(3)$, the integral diverges.

$\blacksquare$