Variance of Poisson Distribution/Proof 3
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable with the Poisson distribution with parameter $\lambda$.
Then the variance of $X$ is given by:
- $\var X = \lambda$
Proof
From Moment Generating Function of Poisson Distribution, the moment generating function of $X$, $M_X$, is given by:
- $\map {M_X} t = e^{\lambda \paren {e^t - 1} }$
From Variance as Expectation of Square minus Square of Expectation, we have:
- $\var X = \expect {X^2} - \paren {\expect X}^2$
From Moment in terms of Moment Generating Function:
- $\expect {X^2} = \map {M_X''} 0$
In Expectation of Poisson Distribution, it is shown that:
- $\map {M_X'} t = \lambda e^t e^{\lambda \paren {e^t - 1} }$
Then:
\(\ds \map {M''_X} t\) | \(=\) | \(\ds \map {\frac \d {\d t} } {\lambda e^t e^{\lambda \paren {e^t - 1} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map {\frac \d {\d t} } {e^{\lambda \paren {e^t - 1} + t} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map {\frac \d {\d t} } {\lambda \paren {e^t - 1} + t} \frac \d {\map \d {\lambda \paren {e^t - 1} + t} } \paren {e^{\lambda \paren {e^t - 1} + t} }\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\lambda e^t + 1} e^{\lambda \paren {e^t - 1} + t}\) | Derivative of Power, Derivative of Exponential Function |
Setting $t = 0$:
\(\ds \expect {X^2}\) | \(=\) | \(\ds \lambda \paren {\lambda e^0 + 1} e^{\lambda \paren {e^0 - 1} + 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\lambda + 1}\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda^2 + \lambda\) |
From Expectation of Poisson Distribution:
- $\expect X = \lambda$
So:
- $\var X = \lambda^2 + \lambda - \lambda^2 = \lambda$
$\blacksquare$