Well Inside Elements Form Filter

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L = \struct{S, \vee, \wedge, \preceq}$ be a distributive lattice with greatest element $\top$ and smallest element $\bot$.

Let $\eqslantless$ denote the well inside relation on $L$.


Then:

$\forall a \in S : \set{b \in S: a \eqslantless b}$ is a lattice filter


Proof

Let $a \in S$.

Let $F = \set{b \in S: a \eqslantless b}$.

$F$ is an Upper Section

Let $b \in F$ and $c \in S : b \preceq c$.


By Ordering Axiom $(3)$: Antisymmetry:

$a \preceq a$

Hence we have:

$a \preceq a \eqslantless b \preceq c$


From Well Inside Relation Extends to Predecessor and Successor:

$a \eqslantless c$

Hence:

$c \in F$


It follows that $F$ is an upper section by definition.

$\Box$

$F$ is a Meet Subsemilattice

Let $b, c \in F$.

By definition of well inside relation:

$\exists x, y \in S : a \wedge x = \bot, b \vee x = \top, a \wedge y = \bot, c \vee y = \top$


We have:

\(\ds \paren{b \wedge c} \vee \paren{x \vee y}\) \(=\) \(\ds \paren{b \vee \paren{x \vee y} } \wedge \paren{c \vee \paren{x \vee y} }\) Definition of Distributive Lattice
\(\ds \) \(=\) \(\ds \paren{b \vee \paren{x \vee y} } \wedge \paren{c \vee \paren{y \vee x} }\) Join is Commutative
\(\ds \) \(=\) \(\ds \paren{\paren{b \vee x} \vee y} \wedge \paren{\paren{c \vee y} \vee x}\) Join is Associative
\(\ds \) \(=\) \(\ds \paren{\top \vee y} \wedge \paren{\top \vee x}\) as $\paren{b \vee x} = \top, \paren{c \vee y} = \top$
\(\ds \) \(=\) \(\ds \top \wedge \top\) Successor is Supremum
\(\ds \) \(=\) \(\ds \top\) Meet is Idempotent


Also we have:

\(\ds a \wedge \paren{x \vee y}\) \(=\) \(\ds \paren{a \wedge x} \vee \paren{a \wedge y}\) Definition of Distributive Lattice
\(\ds \) \(=\) \(\ds \bot \vee \bot\) as $\paren{a \wedge x} = \bot, \paren{a \wedge y} = \bot$
\(\ds \) \(=\) \(\ds \bot\) Join is Idempotent


By definition of well inside relation:

$a \eqslantless b \wedge c$

By definition of $F$:

$b \wedge c \in F$


It follows that $F$ is an meet subsemilattice by definition.

$\Box$


It follows that $F$ is a lattice filter by definition.


The result follows.

$\blacksquare$


Sources