Well Inside Implies Predecessor

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L = \struct{S, \vee, \wedge, \preceq}$ be a distributive lattice with greatest element $\top$ and smallest element $\bot$.

Let $\eqslantless$ denote the well inside relation on $L$.


Then:

$\forall a,b \in S : a \eqslantless b \implies a \preceq b$


Proof

Let $a, b \in S : a \eqslantless b$.


By definition of well inside relation:

$\exists c \in S : a \wedge c = \bot, b \vee c = \top$


We have:

\(\ds a\) \(=\) \(\ds a \wedge \top\) Predecessor is Infimum
\(\ds \) \(=\) \(\ds a \wedge \paren{b \vee c}\) By choice of $c$
\(\ds \) \(=\) \(\ds \paren{a \wedge b} \vee \paren{a \wedge c}\) Definition of Distributive Lattice
\(\ds \) \(=\) \(\ds \paren{a \wedge b} \vee \bot\) By choice of $c$
\(\ds \) \(=\) \(\ds a \wedge b\) Successor is Supremum

From Predecessor is Infimum:

$a \preceq b$

The result follows.

$\blacksquare$


Sources