Zero Matrix is Identity for Hadamard Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \cdot}$ be a monoid whose identity is $e$.

Let $\map {\MM_S} {m, n}$ be an $m \times n$ matrix space over $S$.

Let $\mathbf e = \sqbrk e_{m n}$ be the zero matrix of $\map {\MM_S} {m, n}$.


Then $\mathbf e$ is the identity element for Hadamard product.


Proof

Let $\mathbf A = \sqbrk a_{m n} \in \map {\MM_S} {m, n}$.

Then:

\(\ds \mathbf A \circ \mathbf e\) \(=\) \(\ds \sqbrk a_{m n} \circ \sqbrk e_{m n}\) Definition of $\mathbf A$ and $\mathbf e$
\(\ds \) \(=\) \(\ds \sqbrk {a \cdot e}_{m n}\) Definition of Hadamard Product
\(\ds \) \(=\) \(\ds \sqbrk a_{m n}\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds \mathbf A \circ \mathbf e\) \(=\) \(\ds \mathbf A\) Definition of Zero Matrix over General Monoid


Similarly:

\(\ds \mathbf e \circ \mathbf A\) \(=\) \(\ds \sqbrk e_{m n} \circ \sqbrk a_{m n}\) Definition of $\mathbf A$ and $\mathbf e$
\(\ds \) \(=\) \(\ds \sqbrk {e \cdot a}_{m n}\) Definition of Hadamard Product
\(\ds \) \(=\) \(\ds \sqbrk e_{m n}\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds \mathbf e \circ \mathbf A\) \(=\) \(\ds \mathbf A\) Definition of Zero Matrix over General Monoid

$\blacksquare$


Also see