Addition of Fractions
Jump to navigation
Jump to search
Theorem
Let $a, b, c, d \in \Z$ such that $b d \ne 0$.
Then:
- $\dfrac a b + \dfrac c d = \dfrac {a D + B c} {\lcm \set {b, d} }$
where:
- $B = \dfrac b {\gcd \set {b, d} }$
- $D = \dfrac d {\gcd \set {b, d} }$
- $\lcm$ denotes lowest common multiple
- $\gcd$ denotes greatest common divisor.
Proof
\(\ds \dfrac a b + \dfrac c d\) | \(=\) | \(\ds \dfrac {a d} {b d} + \dfrac {b c} {b d}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a d + b c} {b d}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a d + b c} {\gcd \set {b, d} \lcm \set {b, d} }\) | Product of GCD and LCM | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a D \gcd \set {b, d} + B \gcd \set {b, d} c} {\gcd \set {b, d} \lcm \set {b, d} }\) | substituting for $b$ and $d$ as defined above | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a D + B c} {\lcm \set {b, d} }\) | dividing top and bottom by $\gcd \set {b, d}$ |
$\blacksquare$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {2-2}$ Divisibility: Exercise $7$