Arcsine Logarithmic Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

For any real number $x: -1 \le x \le 1$:

$\arcsin x = \dfrac 1 i \map \ln {i x + \sqrt {1 - x^2} }$

where $\arcsin x$ is the arcsine and $i^2 = -1$.


Proof

Assume $y \in \R$ where $-\dfrac \pi 2 \le y \le \dfrac \pi 2$.

\(\ds y\) \(=\) \(\ds \arcsin x\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \sin y\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \frac 1 {2 i} \paren {e^{i y} - e^{-i y} }\) Euler's Sine Identity
\(\ds \leadstoandfrom \ \ \) \(\ds 2 i x\) \(=\) \(\ds e^{i y} - e^{-i y}\)
\(\ds \leadstoandfrom \ \ \) \(\ds 2 i x e^{i y}\) \(=\) \(\ds e^{2 i y} - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y} -2 i x e^{i y}\) \(=\) \(\ds 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y} - 2 i x e^{i y} - x^2\) \(=\) \(\ds 1 - x^2\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {e^{i y} - i x}^2\) \(=\) \(\ds 1 - x^2\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{i y} - i x\) \(=\) \(\ds \sqrt {1 - x^2}\)
\(\ds \leadstoandfrom \ \ \) \(\ds i y\) \(=\) \(\ds \map \ln {i x + \sqrt {1 - x^2} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(=\) \(\ds \dfrac 1 i \map \ln {i x + \sqrt {1 - x^2} }\)

$\blacksquare$


Also see