Asymptotic Expansion for Cosine Integral Function
Jump to navigation
Jump to search
Theorem
- $\ds \map \Ci x \sim \frac {\cos x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {x^{2 n + 1} } - \frac {\sin x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n}!} {x^{2 n} }$
where:
- $\Ci$ denotes the cosine integral function
- $\sim$ denotes asymptotic equivalence as $x \to \infty$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Cosine Integral $\ds \map \Ci x = \int_x^\infty \frac {\cos u} u \rd u$: $35.16$