Boundary of Union is Subset of Union of Boundaries

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a topological space.

Let $A, B$ be subsets of $S$.

Then:

$\map \partial {A \cup B} \subseteq \partial A \cup \partial B$

where $\partial A$ denotes the boundary of $A$.


Proof

By Intersection is Subset:

$\relcomp S A \cap \relcomp S B \subseteq \relcomp S A \land \relcomp S A \cap \relcomp S B \subseteq \relcomp S B$

Then by Topological Closure of Subset is Subset of Topological Closure:

$\paren {\relcomp S A \cap \relcomp S B}^- \subseteq \paren {\relcomp S A}^- \land \paren {\relcomp S A \cap \relcomp S B}^- \subseteq \paren {\relcomp S B}^-$

Hence by Boundary is Intersection of Closure with Closure of Complement:

$\paren {\relcomp S A \cap \relcomp S B}^- \cap A^- \subseteq \partial A \land \paren {\relcomp S A \cap \relcomp S B}^- \cap B^- \subseteq \partial B$

Thus

\(\ds \map \partial {A \cup B}\) \(=\) \(\ds \paren {\relcomp S {A \cup B} }^- \cap \paren {A \cup B}^-\) Boundary is Intersection of Closure with Closure of Complement
\(\ds \) \(=\) \(\ds \paren {\relcomp S A \cap \relcomp S B}^- \cap \paren {A \cup B}^-\) Complement of Union
\(\ds \) \(=\) \(\ds \paren {\relcomp S A \cap \relcomp S B}^- \cap \paren {A^- \cup B^-}\) Closure of Finite Union equals Union of Closures
\(\ds \) \(=\) \(\ds \paren {\relcomp S A \cap \relcomp S B}^- \cap A^- \cup \paren {\relcomp S A \cap \relcomp S B}^- \cap B^-\) Intersection Distributes over Union
\(\ds \) \(\subseteq\) \(\ds \partial A \cup \partial B\) Set Union Preserves Subsets

$\blacksquare$


Sources