Bounded Generalized Sum is Absolutely Convergent

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $V$ be a Banach space.


Let $\family {v_i}_{i \mathop \in I}$ be an indexed family of elements of $V$.

Let $\FF$ denote the set of finite subsets of $I$.


Then:

the generalized sum $\ds \sum_{i \mathop \in I} v_i$ is absolutely net convergent

if and only if

there exists $M \in \R_{\mathop \ge 0}$ such that for all $F \in \FF$:
the summation $\ds \sum_{i \mathop \in F} \norm{v_i} \le M$


Proof

Necessary Condition

Let the generalized sum $\ds \sum_{i \mathop \in I} v_i$ be absolutely net convergent.

Let:

$M = \ds \sum_{i \mathop \in I} \norm{v_i}$


Aiming for a contradiction, suppose

$\exists F_0 \in \FF : \sum_{i \mathop \in F_0} \norm{v_i} > M$


Let:

$(1) \quad \epsilon \in \R_{\mathop > 0} : \epsilon < \paren{\ds \sum_{i \mathop \in F_0} \norm{v_i} } - M$


By definition of absolutely net convergence:

$(2) \quad \exists F \in \FF : \forall E \in \FF : E \supseteq F \implies \ds \size{\sum_{i \mathop \in E} \norm{v_i} - M} < \epsilon$

Let:

$E = F \cup F_0$

From Set is Subset of Union:

$E \supseteq F$


We have:

\(\ds \sum_{i \mathop \in E} \norm{v_i}\) \(<\) \(\ds M + \epsilon\) from $(2)$
\(\ds \) \(<\) \(\ds \sum_{i \mathop \in F_0} \norm{v_i}\) from $(1)$
\(\ds \) \(\le\) \(\ds \sum_{i \mathop \in F_0} \norm{v_i} + \sum_{i \mathop \in E \setminus F_0} \norm{v_i}\) Norm Axiom $\text N 1$: Positive Definiteness
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in E} \norm{v_i}\) Summation over Union of Disjoint Finite Index Sets


We have a contradiction, so it follows that:

$\forall F \in \FF : \ds \sum_{i \mathop \in F} \norm{v_i} \le M$

$\Box$

Sufficient Condition

Let there exist $M \in \R_{\mathop \ge 0}$ such that for all $F \in \FF$:

the summation $\ds \sum_{i \mathop \in F} \norm{v_i} \le M$.


Let $S = \set{\ds \sum_{i \mathop \in F} \norm{v_i} : F \in \FF}$


From Least Upper Bound Property, let:

$c = \sup S$


From Characterizing Property of Supremum of Subset of Real Numbers:

$(3)\quad \forall F \in \FF : \ds \sum_{i \mathop \in F} \norm{v_i} \le c$

and

$(4)\quad \forall \epsilon \in \R_{> 0}: \exists F \in \FF : \ds \sum_{i \mathop \in F} \norm{v_i} > c - \epsilon$


Let $\epsilon \in \R_{> 0}$.

From $(4)$:

$\exists F \in \FF : \ds \sum_{i \mathop \in F} \norm{v_i} > c - \epsilon$


Let $E \in \FF : E \supseteq F$.

We have:

\(\ds c\) \(\ge\) \(\ds \sum_{i \mathop \in E} \norm{v_i}\) from $(3)$
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in F} \norm{v_i} + \sum_{i \mathop \in E \setminus F} \norm{v_i}\) Summation over Union of Disjoint Finite Index Sets
\(\ds \) \(\ge\) \(\ds \sum_{i \mathop \in F} \norm{v_i}\) Norm Axiom $\text N 1$: Positive Definiteness
\(\ds \) \(>\) \(\ds c - \epsilon\) from $(4)$


Since $E$ was arbitrary, it follows:

$\forall E \in \FF : E \supseteq F \leadsto \ds \sum_{i \mathop \in E} \norm{v_i} \in \openint {c - \epsilon} {c + \epsilon}$


Since $\epsilon$ was arbitrary, it follows:

$\forall \epsilon \in \R_{> 0} : \exists F \in \FF : \forall E \in \FF : E \supseteq F \leadsto \ds \sum_{i \mathop \in E} \norm{v_i} \in \openint {c - \epsilon} {c + \epsilon}$


It follows that the generalized sum $\ds \sum_{i \mathop I} \norm{v_i}$ is convergent to $c$.

The result follows.

$\blacksquare$