Category:Definitions/Elementary Symmetric Polynomials

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Elementary Symmetric Polynomials.
Related results can be found in Category:Elementary Symmetric Polynomials.


Let $K$ be a field.

Let $K \sqbrk {X_1, \ldots, X_n}$ be the ring of polynomial forms over $K$.


The elementary symmetric polynomials in $n$ variables are:

$\ds \map {f_r} {X_1, \ldots, X_n} = \sum_{1 \mathop \le i_1 \mathop < \cdots \mathop < i_r \mathop \le n} x_{i_1} \cdots x_{i_r}: \quad r = 1, \ldots, n$

Pages in category "Definitions/Elementary Symmetric Polynomials"

This category contains only the following page.