Definition:Elementary Symmetric Polynomial
Jump to navigation
Jump to search
Definition
Let $K$ be a field.
Let $K \sqbrk {X_1, \ldots, X_n}$ be the ring of polynomial forms over $K$.
The elementary symmetric polynomials in $n$ variables are:
- $\ds \map {f_r} {X_1, \ldots, X_n} = \sum_{1 \mathop \le i_1 \mathop < \cdots \mathop < i_r \mathop \le n} x_{i_1} \cdots x_{i_r}: \quad r = 1, \ldots, n$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): elementary symmetric polynomial
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): elementary symmetric polynomial