Characterization of Generalized Hilbert Sequence Space/Necessary Condition

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\alpha$ be an infinite cardinal number.

Let $I$ be an indexed set of cardinality $\alpha$.


Let $H^\alpha = \struct{A, d_2}$ be the generalized Hilbert sequence space of weight $\alpha$ where:

$A$ denotes the set of all real-valued functions $x : I \to \R$ such that:
$(1)\quad \set{i \in I: x_i \ne 0}$ is countable
$(2)\quad$ the generalized sum $\ds \sum_{i \mathop \in I} x_i^2$ is a convergent net.


Let $H = \struct{\ell^2, d_{\ell^2}}$ denote the Hilbert sequence space, where:

$\ell^2$ denotes the real $2$-sequence space, that is, the set of all real sequences $\sequence {x_i}$ such that the series $\ds \sum_{n \mathop = 0}^\infty x_n^2$ is convergent


Let $x_1, x_2, \ldots, x_m \in A$.


Then: there exists an enumeration $\set{j_0, j_1, j_2, \ldots}$ of a countably infinite subset of $I$ such that $\forall k \in \closedint 1 m$:

$(1)\quad\set{i \in I : \paren{x_k}_i \ne 0} \subseteq \set{j_0, j_1, j_2, \ldots}$
$(2)\quad\sequence{\paren{x_k}_{j_n}} \in \ell^2$


In which case:

$\forall k \in \closedint 1 m : \ds \sum_{i \mathop \in I} \paren{\paren{x_k}_i}^2 = \sum_{n \mathop = 0}^\infty \paren{\paren{x_k}_{j_n}}^2$

Proof

By definition of $A$:

$\forall k \in \closedint 1 m : \set{i \in I : \paren{x_k}_i \ne 0}$ is countable


From Infinite Set has Countably Infinite Subset, let:

$I' \subseteq I$ be countably infinite


Let:

$J = I' \cup \ds \bigcup_{k \mathop = 1}^m \set{i \in I : \paren{x_k}_i \ne 0}$

From Countable Union of Countable Sets is Countable:

$J$ is countable

From the contrapositive statement of Subset of Finite Set is Finite:

$J$ is countably infinite


From Countably Infinite Set has Enumeration, let:

$\set{j_0, j_1, j_2, \ldots}$ be an enumeration of $J$

From Set is Subset of Union:

$\forall k \in \closedint 1 m : \set{i \in I : \paren{x_k}_i \ne 0} \subseteq \set{j_0, j_1, j_2, \ldots}$


By definition of $A$:

$\forall k \in \closedint 1 m : \ds \sum_{i \mathop \in I} \paren{x_k}_i^2$ converges


We have:

\(\ds \forall k \in \closedint 1 m: \, \) \(\ds \ds \sum_{i \mathop \in I} \paren{x_k}_i^2\) \(=\) \(\ds \sum_{i \mathop \in I} \size{\paren{x_k}_i^2}\) Square of Real Number is Non-Negative and Definition of Absolute Value
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \size{\paren{\paren{x_k}_{j_n} }^2}\) Generalized Sum with Countable Non-zero Summands
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren{\paren{x_k}_{j_n} }^2\) Square of Real Number is Non-Negative and Definition of Absolute Value

Hence:

$\forall k \in \closedint 1 m : \sequence{\paren{x_k}_{j_n}} \in \ell^2$

$\blacksquare$