Characterization of Paracompactness in T3 Space/Lemma 5

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $X$ be a set.


Let $\AA$ and $\VV$ be sets of subsets of $X$.


For each $V \in \VV$, let:

$V^* = X \setminus \ds \bigcup \set{A \in \AA | A \cap V = \O}$


Then:

$\forall V \in \VV: V \subseteq V^*$

Proof

Let $V \in \VV$.


Let $\AA_V = \set{A \in \AA | A \cap V = \O}$.


From Subset of Set Difference iff Disjoint Set:

$\forall A \in \AA_V : V \subseteq X \setminus A$


We have:

\(\ds V\) \(\subseteq\) \(\ds \bigcap \set{X \setminus A : A \in \AA_V}\) Set is Subset of Intersection of Supersets
\(\ds \) \(=\) \(\ds X \setminus \bigcup \set{A : A \in \AA_V}\) De Morgan's Laws for Set Difference
\(\ds \) \(=\) \(\ds V^*\) definition of $V^*$

$\blacksquare$