Closed Unit Ball is Convex Set

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \norm {\, \cdot \,} }$ be a normed vector space.

Let $\map {B_1^-} 0$ be the closed unit ball in $X$.


Then $\map {B_1^-} 0$ is convex.


Proof

Let $x, y \in \map {B_1^-} 0$.

Let $\alpha \in \closedint 0 1$ be arbitrary.

Then:

\(\ds \norm {\paren {1 - \alpha} x + \alpha y}\) \(\le\) \(\ds \norm {\paren {1 - \alpha} x} + \norm {\alpha y}\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \size {1 - \alpha} \norm x + \size \alpha \norm y\) Norm Axiom $\text N 2$: Positive Homogeneity
\(\ds \) \(=\) \(\ds \paren {1 - \alpha} \norm x + \alpha \norm y\) Definition of Convex Set (Vector Space): $0 \le \alpha \le 1$
\(\ds \) \(\le\) \(\ds \paren {1 - \alpha} + \alpha\) $x, y \in \map {B_1^-} 0$
\(\ds \) \(=\) \(\ds 1\)

Therefore, $\paren {1 - \alpha}x + \alpha y \in \map {B_1^-} 0$.

By definition, $\map {B_1^-} 0$ is convex.

$\blacksquare$


Sources