Composition of Ring Epimorphisms is Ring Epimorphism

From ProofWiki
Jump to navigation Jump to search

Theorem

Let:

$\struct {R_1, +_1, \circ_1}$
$\struct {R_2, +_2, \circ_2}$
$\struct {R_3, +_3, \circ_3}$

be rings.


Let:

$\phi: \struct {R_1, +_1, \circ_1} \to \struct {R_2, +_2, \circ_2}$
$\psi: \struct {R_2, +_2, \circ_2} \to \struct {R_3, +_3, \circ_3}$

be (ring) epimorphisms.


Then the composite of $\phi$ and $\psi$ is also a (ring) epimorphism.


Proof

A ring epimorphism is a ring homomorphism which is also a surection.


From Composition of Ring Homomorphisms is Ring Homomorphism, $\psi \circ \phi$ is a ring homomorphism.

From Composite of Surjections is Surjection, $\psi \circ \phi$ is a surection.

$\blacksquare$


Sources