Composition of Symmetric Relation with Itself is Union of Products of Images

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a symmetric relation on a set $S$.

Then:

$\RR \circ \RR = \ds \map {\bigcup_{s \mathop \in S} } {\map \RR s \times \map \RR s}$

where

$\RR \circ \RR$ is the composition of $\RR$ with itself
$\map \RR s$ is the image of $s$ under $\RR$
$\map \RR s \times \map \RR s$ is the Cartesian product of $\map \RR s$ with itself


Proof

We have:

\(\ds \tuple {x, y} \in \RR \circ \RR\) \(\leadstoandfrom\) \(\ds \exists s \in S : \tuple {x, s}, \tuple {s, y} \in \RR\) Definition of Composite Relation
\(\ds \) \(\leadstoandfrom\) \(\ds \exists s \in S : \tuple {s, x}, \tuple {s, y} \in \RR\) Definition of Symmetric Relation
\(\ds \) \(\leadstoandfrom\) \(\ds \exists s \in S : x, y \in \map \RR s\) Definition of Image of Element under Relation
\(\ds \) \(\leadstoandfrom\) \(\ds \exists s \in S : \tuple {x, y} \in \map \RR s \times \map \RR s\) Definition of Cartesian Product
\(\ds \) \(\leadstoandfrom\) \(\ds \tuple{x,y} \in \map {\bigcup_{s \mathop \in S} } {\map \RR s \times \map \RR s}\) Definition of Set Union

$\blacksquare$