Cosine of 36 Degrees/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 36 \degrees = \cos \dfrac \pi 5 = \dfrac \phi 2 = \dfrac {1 + \sqrt 5} 4$

where $\phi$ denotes the golden mean.


Proof

\(\ds \sin 108 \degrees\) \(=\) \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) Triple Angle Formula for Sine
\(\ds \sin 72 \degrees\) \(=\) \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) Sine of Supplementary Angle
\(\ds 2 \sin 36 \degrees \cos 36 \degrees\) \(=\) \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) Double Angle Formula for Sine
\(\ds 2 \cos 36 \degrees\) \(=\) \(\ds 3 - 4 \sin^2 36 \degrees\) dividing both sides by $\sin 36 \degrees$
\(\ds \) \(=\) \(\ds 4 \cos^2 36 \degrees - 1\) Sum of Squares of Sine and Cosine
\(\ds \leadsto \ \ \) \(\ds 4 \cos^2 36 \degrees - 2 \cos 36 \degrees - 1\) \(=\) \(\ds 0\)
\(\ds \cos 36 \degrees\) \(=\) \(\ds \frac {2 \pm \sqrt {2^2 + 4 \times 4} } {2 \times 4}\) Quadratic Formula
\(\ds \) \(=\) \(\ds \frac {2 \pm \sqrt {20} } 8\)
\(\ds \) \(=\) \(\ds \frac {1 + \sqrt 5} 4\) negative root is rejected as $\cos 36 \degrees > 0$

$\blacksquare$