Cotangent Additive Formula

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \N_{>0}$ where $\N_{>0}$ denotes the non-zero natural numbers.

Let $z \in \C$ such that $\map \sin {n z} \ne 0$


Then:

$\ds \map \cot {n z} = \frac 1 n \sum_{k \mathop = 0}^{n - 1} \map \cot {z + \frac {k \pi} n}$

where $\cot$ denotes the cotangent function.


Proof

\(\ds \map \sin {n z}\) \(=\) \(\ds 2^{n - 1} \prod_{k \mathop = 0}^{n - 1} \map \sin {z + \frac {k \pi} n}\) Product Formula for Sine
\(\ds \leadsto \ \ \) \(\ds \map \ln {\map \sin {n z} }\) \(=\) \(\ds \paren {n - 1} \ln 2 + \sum_{k \mathop = 0}^{n - 1} \map \ln {\map \sin {z + \frac {k \pi} n} }\) taking the natural logarithm of both sides, Sum of Logarithms/Natural Logarithm
\(\ds \leadsto \ \ \) \(\ds n \map \cot {n z}\) \(=\) \(\ds \sum_{k \mathop = 0}^{n - 1} \map \cot {z + \frac {k \pi} n}\) taking the derivative of both sides, Derivative of Natural Logarithm Function, Derivative of Sine Function
\(\ds \leadsto \ \ \) \(\ds \map \cot {n z}\) \(=\) \(\ds \frac 1 n \sum_{k \mathop = 0}^{n - 1} \map \cot {z + \frac {k \pi} n}\) dividing by $n$

$\blacksquare$


Also see