Derivative of Natural Logarithm Function
Theorem
Let $\ln x$ be the natural logarithm function.
Then:
- $\map {\dfrac \d {\d x} } {\ln x} = \dfrac 1 x$
Proof 1
\(\ds \ln x\) | \(:=\) | \(\ds \int_1^x \dfrac 1 t \rd t\) | Definition 1 of Natural Logarithm | |||||||||||
\(\ds \frac \d {\d x} \ln x\) | \(=\) | \(\ds \frac \d {\d x} \int_1^x \dfrac 1 t \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x\) | Fundamental Theorem of Calculus |
$\blacksquare$
Proof 2
This proof assumes the definition of the natural logarithm as the inverse of the exponential function, where the exponential function is defined as the limit of a sequence:
- $e^x := \ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n$
It also assumes the Laws of Logarithms.
\(\ds \map {\frac \d {\d x} } {\ln x}\) | \(=\) | \(\ds \lim_{\Delta x \mathop \to 0} \frac {\map \ln {x + \Delta x} - \ln x} {\Delta x}\) | Definition of Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\Delta x \mathop \to 0} \frac {\map \ln {\frac {x + \Delta x} x} } {\Delta x}\) | Difference of Logarithms | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\Delta x \mathop \to 0} \paren {\frac 1 {\Delta x} \centerdot \map \ln {1 + \frac {\Delta x} x} }\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \lim_{\Delta x \mathop \to 0} \paren {\map \ln {\paren {1 + \frac {\Delta x} x}^{1 / \Delta x} } }\) | Natural Logarithm of Power |
Define $u$ as:
\(\ds u\) | \(=\) | \(\ds \dfrac {\Delta x} x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \Delta x\) | \(=\) | \(\ds u x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 1 {\Delta x}\) | \(=\) | \(\ds \frac 1 x \cdot \frac 1 u\) |
Hence:
\(\ds \) | \(=\) | \(\ds \lim_{u \mathop \to 0} \paren {\map \ln {\paren {1 + u}^{\frac 1 u \cdot \frac 1 x} } }\) | substituting $u x$ for $\Delta x$ in $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{u \mathop \to 0} \paren {\frac 1 x \cdot \map \ln {1 + u}^{\frac 1 u} }\) | Natural Logarithm of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x \cdot \lim_{u \mathop \to 0} \paren {\map \ln {1 + u}^{\frac 1 u} }\) | factoring out constants | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x \cdot \lim_{v \mathop \to +\infty} \paren {\map \ln {1 + \frac 1 v}^v}\) | substituting $\dfrac 1 v$ for $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x \cdot \ln e^1\) | Limit of Composite Function, Limit definition of $e^x$, Real Natural Logarithm Function is Continuous | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x\) | Exponential of Natural Logarithm |
$\blacksquare$
Proof 3
This proof assumes the definition of the natural logarithm as the inverse of the exponential function as defined by differential equation:
- $y = \dfrac {\d y} {\d x}$
- $y = e^x \iff \ln y = x$
\(\ds \frac {\d y} {\d x}\) | \(=\) | \(\ds y\) | Definition of Exponential Function | |||||||||||
\(\ds \int \frac 1 y \rd y\) | \(=\) | \(\ds \int \rd x\) | Separation of Variables | |||||||||||
\(\ds \) | \(=\) | \(\ds x + C_0\) | Integral of Constant where that constant is $1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln y + C_0\) | Definition 2 of Natural Logarithm: $x = \ln y$ |
The result follows from the definition of the antiderivative and the defined initial condition:
- $\tuple {x_0, y_0} = \tuple {0, 1}$
$\blacksquare$
Proof 4
This proof assumes the definition of the natural logarithm as the limit of a sequence of real functions.
Let $\sequence {f_n}$ be the sequence of mappings $f_n: \R_{>0} \to \R$ defined as:
- $\map {f_n} x = n \paren {\sqrt [n] x - 1}$
Fix $x_0 \in \R_{>0}$.
Pick $k \in \N : x_0 \in J := \closedint {\dfrac 1 k} k$.
From definition of bounded interval, $J$ is bounded.
From Derivative of Nth Root and Combination Theorem for Sequences:
- $\forall n \in \N : \forall x \in J : D_x \map {f_n} x = \dfrac {\sqrt [n] x} x$
In particular:
- $\forall n: f_n$ is differentiable on $J$
From Defining Sequence of Natural Logarithm is Convergent, $\sequence {\map {f_n} {x_0} }$ is convergent.
Lemma
Let $\sequence {f_n}_n$ be the sequence of real functions $f_n: \R_{>0} \to \R$ defined as:
- $\map {f_n} x = n \paren {\sqrt [n] x - 1}$
Let $k \in \N$.
Let $J = \closedint {\dfrac 1 k} k$.
Then the sequence of derivatives $\sequence { {f_n}'}_n$ converges uniformly to some real function $g: J \to \R$.
$\Box$
From the lemma, $\sequence { {f_n}'}$ converges uniformly to $\dfrac 1 x$ on $J$.
From Derivative of Uniformly Convergent Sequence of Differentiable Functions, $\map {f'} x = \dfrac 1 x$ on $J$
In particular:
- $\map {f'} {x_0} = \dfrac 1 {x_0}$
Hence the result.
$\blacksquare$
Examples
Example: $\paren {x - 2}^{1/3} \paren {x - 3}^{1/2} \paren {2 x - 1}^{3/2}$
Let $y = \paren {x - 2}^{1/3} \paren {x - 3}^{1/2} \paren {2 x - 1}^{3/2}$.
Then:
- $\dfrac {\d y} {\d x} = \paren {\dfrac 1 {3 \paren {x - 2} } + \dfrac 1 {2 \paren {x - 3} } + \dfrac 3 {2 x - 1} } \paren {x - 2}^{1/3} \paren {x - 3}^{1/2} \paren {2 x - 1}^{3/2}$
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Integration of Elementary Functions: $\S 7$. Standard Integrals: $2$.
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1963: Morris Tenenbaum and Harry Pollard: Ordinary Differential Equations ... (previous) ... (next): Chapter $1$: Basic Concepts: Lesson $3$: The Differential Equation
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $5$. Differential Calculus: Appendix: Derivatives of fundamental functions: $5.$ Logarithmic function
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $7$: Derivatives
- For a video presentation of the contents of this page, visit the Khan Academy.