Definite Integral from 0 to 1 of Zeta of 2 minus Dilogarithm of x over One minus x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_{\to 0}^{\to 1} \dfrac {\paren {\map \zeta 2 - \map {\Li_2} x } } {1 - x} \rd x = 2 \map \zeta 3$

where:

$\map {\Li_2} x$ is the Dilogarithm function of $x$
$\map \zeta 2$ is the Riemann $\zeta$ function of $2$
$\map \zeta 3$ is Apéry's constant: the Riemann $\zeta$ function of $3$.


Proof

With a view to expressing the primitive in the form:

\(\ds \int u \frac {\d v} {\d x} \rd x\) \(=\) \(\ds u v - \int v \frac {\d u} {\d x} \rd x\) Integration by Parts


let:

\(\ds u\) \(=\) \(\ds \map \zeta 2 - \map {\Li_2} x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {\map \ln {1 - x} } x\) Definition of Spence's Function: $\ds \map {\Li_2} z = -\int_0^z \frac {\map \Ln {1 - t} } t \rd t$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \frac 1 {\paren {1 - x} }\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds -\paren {\map \ln {1 - x} }\) Primitive of $\dfrac 1 {a x + b}$


Then:

\(\ds \int_{\to 0}^{\to 1} \dfrac {\paren {\map \zeta 2 - \map {\Li_2} x } } {1 - x} \rd x\) \(=\) \(\ds \bigintlimits {\paren {\map \zeta 2 - \map {\Li_2} x} \paren {-\paren {\map \ln {1 - x} } } } 0 1 + \int_0^1 \frac {\paren {\map \ln {1 - x} }^2} x \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds 0 + \int_0^1 \frac {\paren {\map \ln {1 - x} }^2} x \rd x\)
\(\ds \) \(=\) \(\ds \int_1^0 \frac {\paren {\map \ln u}^2} {1 - u} \paren {-\d u}\) $x \to \paren {1 - u}$ and $\rd x \to -\rd u$
\(\ds \) \(=\) \(\ds \int_0^1 \frac {\paren {-\map \ln u} \paren {-\map \ln u} } {1 - u} \rd u\) reversing limits of integration
\(\ds \) \(=\) \(\ds \int_0^1 \frac {\paren {\map \ln {\dfrac 1 u} }^{3 - 1} } {1 - u} \rd u\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds \map \zeta 3 \map \Gamma 3\) Integral Representation of Riemann Zeta Function in terms of Gamma Function: $\ds \map \zeta s \map \Gamma s = \int_0^1 \frac {\paren {\map \ln {\frac 1 u} }^{s - 1} } {1 - u} \rd u$
\(\ds \) \(=\) \(\ds 2 \map \zeta 3\) Gamma Function of $3$

$\blacksquare$