Primitive of Reciprocal of a x + b
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {a x + b} = \frac 1 a \ln \size {a x + b} + C$
Proof
\(\ds \int \frac {\d x} {a x + b}\) | \(=\) | \(\ds \frac 1 a \int \frac {\map \d {a x + b} } {a x + b}\) | Primitive of Function of $a x + b$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \ln \size {a x + b} + C\) | Primitive of Reciprocal |
$\blacksquare$
Examples
Primitive of $\dfrac 1 {x - a}$
- $\ds \int \frac {\d x} {x - a} = \ln \size {x - a} + C$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Exercises $\text {XIV}$: $5$.
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Standard Forms: $\text {(ii) (b)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.59$
- 1983: K.G. Binmore: Calculus ... (previous) ... (next): $9$ Sums and Integrals: $9.8$ Standard Integrals