Definite Integral of Exponential of minus a x squared from 0 to Infinity

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \map \exp {-a x^2} \rd x = \dfrac 1 2 \sqrt {\dfrac \pi a}$

for $a > 0$.


Proof

Recall Integral to Infinity of $\map \exp {-x^2}$:

$\ds \int_0^\infty \map \exp {-x^2} \rd x = \dfrac {\sqrt \pi} 2$


Then:

\(\ds \int \map \exp {-a x^2} \rd x\) \(=\) \(\ds \int \map \exp {-\paren {\sqrt a x}^2} \rd x\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt a} \int \map \exp {-\paren {\sqrt a x}^2} \rd \paren {\sqrt a x}\) Primitive of Function of Constant Multiple
\(\ds \leadsto \ \ \) \(\ds \int_0^\infty \map \exp {-a x^2} \rd x\) \(=\) \(\ds \dfrac 1 {\sqrt a} \int_0^\infty \map \exp {-\paren {\sqrt a x}^2} \rd \paren {\sqrt a x}\) as the limits of integration stay the same
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt a} \dfrac {\sqrt \pi} 2\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \sqrt {\dfrac \pi a}\)

$\blacksquare$


Sources