Definition:Commutator of Group Elements/Definition 1

From ProofWiki
Jump to navigation Jump to search


Let $\struct {G, \circ}$ be a group.

Let $g, h \in G$.

The commutator of $g$ and $h$ is the element of $G$ defined and denoted:

$\sqbrk {g, h} := g^{-1} \circ h^{-1} \circ g \circ h$

Also see

  • Results about commutators of group elements can be found here.