Definition:Hayford Spheroid

From ProofWiki
Jump to navigation Jump to search

Definition

The Hayford spheroid is defined by:

its semi-major axis $a = 6 \, 378 \, 388 \cdotp 000 \, \mathrm m$
its flattening $f = 1:297 \cdotp 00$
its minor axis $b = 6 \, 356 \, 912 \cdotp 000 \, \mathrm m$


Geodetic Constants

Geodetic Constants
Latitude Length of $1$ Minute of Longitude: $\mathrm m$ Length of $1$ Minute of Latitude: $\mathrm m$ Local Gravitational Constant: $\mathrm {m \, s^{-2} }$
$0 \degrees$ $1 \, 855 \cdotp 398$ $1 \, 842 \cdotp 925$ $9 \cdotp 780 \, 350$
$15 \degrees$ $1 \, 792 \cdotp 580$ $1 \, 844 \cdotp 170$ $9 \cdotp 783 \, 800$
$30 \degrees$ $1 \, 608 \cdotp 174$ $1 \, 847 \cdotp 580$ $9 \cdotp 793 \, 238$
$45 \degrees$ $1 \, 314 \cdotp 175$ $1 \, 852 \cdotp 256$ $9 \cdotp 806 \, 154$
$60 \degrees$ $930 \cdotp 047$ $1 \, 856 \cdotp 951$ $9 \cdotp 819 \, 099$
$75 \degrees$ $481 \cdotp 725$ $1 \, 860 \cdotp 401$ $9 \cdotp 828 \, 593$
$90 \degrees$ $0$ $1 \, 861 \cdotp 666$ $9 \cdotp 832 \, 072$


Also see

  • Results about the Hayford spheroid can be found here.


Source of Name

This entry was named for John Fillmore Hayford.


Sources