Definition:Minimum Value of Real Function/Absolute

From ProofWiki
Jump to navigation Jump to search


Let $f: \R \to \R$ be a real function.

Let $f$ be bounded below by an infimum $B$.

It may or may not be the case that $\exists x \in \R: \map f x = B$.

If such a value exists, it is called the minimum value of $f$ on $S$, and this minimum is attained at $x$.

Also known as

An absolute minimum is also known as a minimum value, or just a minimum if there is no need to distinguish it from a local minimum.

Also see