Definition:Ordinal Sequence Defined by Transfinite Recursion

From ProofWiki
Jump to navigation Jump to search

Definition

Consider the Transfinite Recursion Theorem: Formulation 4:

Let $\On$ denote the class of all ordinals.

Let $g$ be a mapping defined for all sets.

Let $c$ be a set.


Then there exists a unique $\On$-sequence $S_0, S_1, \dots, S_\alpha, \dots$ such that:

\((1)\)   $:$      \(\ds S_0 \)   \(\ds = \)   \(\ds c \)      
\((2)\)   $:$     \(\ds \forall \alpha \in \On:\)    \(\ds S_{\alpha + 1} \)   \(\ds = \)   \(\ds \map g {S_\alpha} \)      
\((3)\)   $:$     \(\ds \forall \lambda \in K_{II}:\)    \(\ds S_\lambda \)   \(\ds = \)   \(\ds \bigcup_{\alpha \mathop < \lambda} S_\alpha \)      

where $K_{II}$ denotes the class of all limit ordinals.

$\Box$


The $\On$-sequence $S_0, S_1, \dots, S_\alpha, \dots$ is referred to as:

the $\On$-sequence defined from $g$ and $c$ by transfinite recursion.


Sources