# Definition:Zero/Historical Note

## Historical Note on Zero

The Babylonians from the $2$nd century BCE used a number base system of arithmetic, with a placeholder to indicate that a particular place within a number was empty, but its use was inconsistent. However, they had no actual recognition of zero as a mathematical concept in its own right.

The Ancient Greeks had no conception of zero as a number.

The concept of zero was invented by the mathematicians of India. The *Bakhshali Manuscript* from the $3$rd century CE contains the first reference to it.

However, even then there were reservations about its existence, and misunderstanding about how it behaved.

In *Ganita Sara Samgraha* of Mahaviracharya, c. $850$ CE appears:

*A number multiplied by zero is zero and that number remains unchanged which is divided by, added to or diminished by zero.*

It was not until the propagation of Arabic numbers, where its use as a placeholder made it important, that it became commonplace.

## Sources

- 1939: E.G. Phillips:
*A Course of Analysis*(2nd ed.) ... (previous) ... (next): Chapter $\text {I}$: Number: $1.1$ Introduction - 1983: François Le Lionnais and Jean Brette:
*Les Nombres Remarquables*... (next): $0$ - 1986: David Wells:
*Curious and Interesting Numbers*... (previous) ... (next): $-1$ and $i$ - 1986: David Wells:
*Curious and Interesting Numbers*... (previous) ... (next): $0$ Zero - 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $-1$ and $i$ - 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $0$ Zero