Dirichlet Integral/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \frac {\sin x} x \rd x = \frac \pi 2$


Proof

By Fubini's Theorem:

$\ds \int_0^\infty \paren {\int_0^\infty e^{- x y} \sin x \rd y} \rd x = \int_0^\infty \paren {\int_0^\infty e^{- x y} \sin x \rd x} \rd y$


Then:

\(\ds \int_0^\infty e^{- x y} \sin x \rd y\) \(=\) \(\ds \intlimits {-e^{- x y} \frac {\sin x} x} 0 \infty\) Primitive of $e^{a x}$
\(\ds \) \(=\) \(\ds \frac {\sin x} x\)


and:

\(\ds \int_0^\infty e^{- x y} \sin x \rd x\) \(=\) \(\ds \intlimits {\frac {-e^{- x y} \paren {y \sin x + \cos x} } {y^2 + 1} } 0 \infty\) Primitive of $e^{a x} \sin b x$
\(\ds \) \(=\) \(\ds \frac 1 {y^2 + 1}\)


Hence:

\(\ds \int_0^\infty \frac {\sin x} x \rd x\) \(=\) \(\ds \int_0^\infty \frac 1 {y^2 + 1} \rd y\)
\(\ds \) \(=\) \(\ds \bigintlimits {\arctan y} 0 \infty\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \frac \pi 2\) as $\ds \lim_{y \mathop \to \infty} \arctan y = \frac \pi 2$

$\blacksquare$